136 research outputs found

    Detecting Threats of Violence in Online Discussions Using Bigrams of Important Words

    Get PDF
    Making violent threats towards minorities like immigrants or homosexuals is increasingly common on the Internet. We present a method to automatically detect threats of violence using machine learning. A material of 24,840 sentences from YouTube was manually annotated as violent threats or not, and was used to train and test the machine learning model. Detecting threats of violence works quit well with an error of classifying a violent sentence as not violent of about 10% when the error of classifying a non-violent sentence as violent is adjusted to 5%. The best classification performance is achieved by including features that combine specially chosen important words and the distance between those in the sentence

    Bayesian lithology–fluid inversion - algorithm efficiency

    Get PDF
    Algorithms for inversion of seismic prestack AVO data into lithology-fluid classes in a vertical profile are evaluated. The inversion is defined in a Bayesian setting where the prior model for the lithology-fluid classes is a Markov chain, and the likelihood model relates seismic data and elastic material properties to these classes. The likelihood model is approximated such that the posterior model can be calculated recursively using the extremely efficient forward–backward algorithm. The impact of the approximation in the likelihood model is evaluated empirically by comparing results from the approximate approach with results generated from the exact posterior model. The exact posterior is assessed by sampling using a sophisticated Markov chain Monte Carlo simulation algorithm. The simulation algorithm is iterative, and it requires considerable computer resources. Seven realistic evaluation models are defined, from which synthetic seismic data are generated. Using identical seismic data, the approximate marginal posterior is calculated and the exact marginal posterior is assessed. It is concluded that the approximate likelihood model preserves 50% to 90% of the information content in the exact likelihood model

    Approximate forward–backward algorithm for a switching linear Gaussian model

    Get PDF
    A hidden Markov model with two hidden layers is considered. The bottom layer is a Markov chain and given this the variables in the second hidden layer are assumed conditionally independent and Gaussian distributed. The observation process is Gaussian with mean values that are linear functions of the second hidden layer. The forward backward algorithm is not directly feasible for this model as the recursions result in a mixture of Gaussian densities where the number of terms grows exponentially with the length of the Markov chain. By dropping the less important Gaussian terms an approximate forward backward algorithm is defined. Thereby one gets a computationally feasible algorithm that generates samples from an approximation to the conditional distribution of the unobserved layers given the data. The approximate algorithm is also used as a proposal distribution in a Metropolis Hastings setting, and this gives high acceptance rates and good convergence and mixing properties. The model considered is related to what is known as switching linear dynamical systems. The proposed algorithm can in principle also be used for these models and the potential use of the algorithm is therefore large. In simulation examples the algorithm is used for the problem of seismic inversion. The simulations demonstrate the effectiveness and quality of the proposed approximate algorithm

    Microbial specialists in below-grade foundation walls in Scandinavia

    Get PDF
    Below-grade foundation walls are often exposed to excessive moisture by water infiltration, condensation, leakage, or lack of ventilation. Microbial growth in these structures depends largely on environmental factors, elapsed time, and the type of building materials and construction setup. The ecological preferences of Actinomycetes (Actinobacteria) and the molds Ascotricha chartarum, Myxotrichum chartarum (Ascomycota), Geomyces pannorum, and Monocillium sp. (Hyphomycetes) have been addressed based on analyses of 1764 samples collected in below-grade spaces during the period of 2001–2012. Our results show a significant correlation between these taxa and moist foundation walls as ecological niches. Substrate preference was the strongest predictor of taxa distribution within the wall, but the taxa's physiological needs, together with gradients of abiotic factors within the wall structure, also played a role. Our study describes for the first time how the wall environment affects microbial growth

    Approximate Bayesian Inference Based on Expected Evaluations

    Get PDF
    Approximate Bayesian computing (ABC) and Bayesian Synthetic likelihood (BSL) are two popular families of methods to evaluate the posterior distribution when the likelihood function is not available or tractable. For existing variants of ABC and BSL, the focus is usually first put on the simulation algorithm, and after that the form of the resulting approximate posterior distribution comes as a consequence of the algorithm. In this paper we turn this around and firstly define a reasonable approximate posterior distribution by studying the distributional properties of the expected discrepancy, or more generally an expected evaluation, with respect to generated samples from the model. The resulting approximate posterior distribution will be on a simple and interpretable form compared to ABC and BSL. Secondly a Markov chain Monte Carlo (MCMC) algorithm is developed to simulate from the resulting approximate posterior distribution. The algorithm was evaluated on a synthetic data example and on the Stepping Stone population genetics model, demonstrating that the proposed scheme has real world applicability. The algorithm demonstrates competitive results with the BSL and sequential Monte Carlo ABC algorithms, but is outperformed by the ABC MCMC
    • …
    corecore